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Abstract. The magnetic susceptibility and the low-temperature specific heat of the one-
dimensional Hubbard model under the integrable open-boundary conditions are discussed through
the Bethe ansatz with the string hypothesis. The contributions of the boundary fields to both
the susceptibility and the specific heat are obtained, and their exact expressions are analytically
derived.

1. Introduction

The problem of a quantum impurity in three-dimensional (3d) electrons has been a
fascinating topic in condensed matter physics. It is related to many nontrivial phenemena
such as the Kondo problem. The low-temperature behaviours of the Kondo and the Anderson
models are rigorously obtained by the Bethe-ansatz method [1, 2]. Recently, some aspects
of the impurity problem in one-dimensional (1d) systems have attracted renewed interest
from different branches of physics [3–7]. The motivation of this paper is to investigate the
impurity effect in the 1d interacting electrons under integrable boundary conditions.

Generally, it is expected that at low temperature the quantum impurity Hamiltonians are
renormalized to critical points which correspond to conformal invariant boundary conditions
[4, 5]. In fact, the impurity effects have been discussed from the analysis of the different
boundary conditions [6, 8–10]. During the last decade the Bethe-ansatz techniques for
integrable open chains have been developed [11–15]. In [9], the magnetization of an
anisotropic Heisenberg model with open-boundary conditions was derived. The result is
generalized to the supersymmetric t-J model with open boundaries and the bulk and surface
magnetizations are obtained [10]. We can also discuss the Bethe-ansatz equations for the
1d Hubbard model under some open-boundary conditions [16–19].

However, the thermodynamic properties of thet–J or Hubbard models have not yet
been discussed under the open-boundary condition. It seems that under open boundaries
the free energy becomes divergent due to an infinite number of zero modes.
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Let us discuss one of the most different properties of the 1d impurity effect. In the
Kondo problem the Wilson ratio plays an important role [20]. Based on the local Fermi-
liquid theory, the local impurity effect in the 3d free electrons is fully characterized by
the single parameter which is related to the ratio of the specific heat and the magnetic
susceptibility due to the impurity [21]. For the 1d Hubbard model, however, the local
impurity effect could not be described by one parameter and it should be highly nontrivial.
The low-energy spectrum is given by the Tomonaga–Luttinger liquid, which is completely
different from the Fermi liquid. Furthermore, the impurity effect also depends on the
Coulomb interaction among the conduction electrons. In this paper, we will evaluate the
boundary effects to the magnetic susceptibility and specific heat of the 1d Hubbard model
under the open-boundary conditions, which should characterize the impurity effect in the
1d interacting electronic system in the same way as the Wilson ratio does for the Kondo
problem.

Let us first review the Hamiltonian on the 1d lattice withL sites [18]

H = −
L−1∑
j=1

∑
σ=↑,↓

(
c
†
jσ cj+1σ + c†j+1σ cjσ

)
+ U

L∑
j=1

nj↑nj↓ + µ
L∑
j=1

(nj↑ + nj↓)

−h
2

L∑
j=1

(nj↑ − nj↓)+
∑
σ=↑,↓

(p1σ n1σ + pLσnLσ ). (1)

Here the symbols−µ and−pjσ (j = 1, or L) correspond to the chemical potential and
boundary fields, respectively. The symbolU denotes the Coulomb interaction. When
pj↑ = pj↓ (boundary chemical potential) orpj↑ = −pj↓ (boundary magnetic field) forj =
1 andL, we can solve the above Hamiltonian by the Bethe-ansatz method. The solution of
N electrons withM down-spins has wavenumberskj for j = 1, . . . N and rapiditiesvm for
m = 1 . . .M. The Bethe-ansatz equations for it are given in the following [18].

(e−ikj p1↑ + 1)(eikj + pL↑)
(eikj p1↑ + 1)(e−ikj + pL↑)ei2kjL =

M∏
m=1

(sinkj − vm + iU/4)(sinkj + vm + iU/4)

(sinkj − vm − iU/4)(sinkj + vm − iU/4)
(2)

(ζ+ − vm − iU/4)(ζ− − vm − iU/4)

(ζ+ + vm − iU/4)(ζ− + vm − iU/4)

M∏
n=1,n6=m

(vm − vn + iU/2)(vm + vn + iU/2)

(vm − vn − iU/2)(vm + vn − iU/2)

=
N∏
j=1

(vm − sinkj + iU/4)(vm + sinkj + iU/4)

(vm − sinkj − iU/4)(vm + sinkj − iU/4)
(3)

where

ζ+ =


∞ for p1↑ = p1↓

−1− p2
1↑

2ip1↑
for p1↑ = −p1↑

ζ− =


∞ for pL↑ = pL↓

−1− p2
L↑

2ipL↑
for pL↑ = −pL↑.

(4)

In [18] the Bethe-ansatz equations (2) and (3) are systematically derived by using the
reflection equations.

2. The magnetic susceptiblity

Now, we discuss the derivation of the magnetic susceptibility of the Hamiltonian (1) at zero
temperature. We shall evaluate the boundary contributions to the susceptibility using the
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method of [22] where the susceptibility is derived under periodic boundary condition. For
the evaluation of the susceptibility we assume that the electron densityn = N/L is less
than half-filling (0< n < 1).

Let us consider the ground states of the open-boundary Hubbard model for the repulsive
(U > 0) and attractive (U < 0 ) cases. The equations (2) and (3) hold for positive and
negative values ofU . However, the ground-state solutions of the Bethe-ansatz equations
are different for the two cases. ForU > 0, we may consider only the case when the ground
state is characterized by realkj ’s and realvm’s†. For U < 0, we may assume that the
electrons may form singlet bound pairs in the ground state; the ground-state solution of the
Bethe-ansatz equations consists of realkj ’s, realvm’s and pairs of complex momentak±n

sin(k±n ) = vn ± iu (5)

whereu = |U |/4.
We solve the Bethe-ansatz equations based on the assumptions of the ground state.

Hereafter, a subscriptr = ‘ >’ (r = ‘ <’) stands for the positive (negative)U case. For
the positiveU case, letρ>,L(k)1 andρ>,L(v)2 denote the densities of electron momentakj
and that of down-spin rapiditiesvm, respectively. For the negativeU case, we denote by
ρ<,L(k)1 andρ<,L(v)2, the densities of real momentakj and that of the string centresvm,
respectively [22]. We denote byρr,L the vector of the densitiesρr,L = (ρr,L(k)1, ρr,L(v)2)
for r =>,<. We now take the asymptotic expansion with respect to 1/L. Then, we have
the following integral equation

ρr,L(k, v) = ρ0
r,L(k, v)+Kr (k, v|k′, v′)ρr,L(k′, v′). (6)

Here the initial values of the densitiesρ0
r,L(k, v) = ρ0

r,∞(k, v)+ τ 0
r /L are given by

ρ0
>,∞(k, v) =

(
1
π

0

)
τ 0
>(k, v) =

( d
dk P>,0(k)
d

dvQ>,0(v)

)
(7)

ρ0
<,∞(k, v) =

( 1
π

2
π

Re 1√
1−(v−iu)2

)
τ 0
<(k, v) =

( d
dk P<,0(k)
d

dvQ<,0(v)

)
. (8)

The definitions of d/dk Pr,0(k) and d/dv Qr,0(v) will be given in equation (20) forr =>‡,
while for r =< they are given in the following:

2π
d

dk
P<,0(k) = 2(1+ pL↑ cosk)

1+ p2
L↑ + 2pL↑ cosk

− 2p1↑(p1↑ + cosk)

1+ p2
1↑ + 2p1↑ cosk

+ 2u cosk

sin2 k + u2

2π
d

dv
Q<,0(v) = Re

(
1+ pL↑

√
1− (v − iu)2

1+ p2
L↑ + 2pL↑

√
1− (v − iu)2

2√
1− (v − iu)2

)

−Re

(
p1↑ +

√
1− (v − iu)2

1+ p2
1↑ + 2p1↑

√
1− (v − iu)2

2p1↑√
1− (v − iu)2

)

+ 4u

v2+ 4u2
+ 2(u+ iζ+)
v2+ (u+ iζ+)2

+ 2(u+ iζ−)
v2+ (u+ iζ−)2

. (9)

We note that the kernelK> was given in [18] andK< = σ 3K>σ
3 [22]. The parameters

Q andB [18] for the upper or lower bounds of the integral intervals have the following

† For some values of the boundary fields, the Bethe-ansatz equations may have pure imaginary solutions (boundary
bound states) for the ground state.
‡ d/dv Q>,0(v) is given by d/dv Qn

0(v) of n = 1 in equation (20).



8132 R Yue and T Deguchi

constraints ∫ Q

−Q
ρ>,L(k)1 dk = 2n+ 1

L

∫ B

−B
ρ>,L(v)2 dv = n− 2s + 1

L∫ Q

−Q
ρ<,L(k)1 dk = 4s + 1

L

∫ B

−B
ρ<,L(v)2 dv = n− 2s + 1

L

(10)

wheres has been defined bys = (N − 2M)/2L. The ground-state energyEr for r =>,<
is given by

E>

L
= 1

L
[1− µs − h/2]+ (e0

>,ρ>,L)

E<

L
= 1

L
[1− µs − µ+ 2

√
1+ u2] + (e0

<,ρ<,L)

(11)

whereµs = µ/2− h/4. The dressed energyer satisfieser = e0
r +KT

r er with the initial
values

e0
> =

(
µs − cosk
h/2

)
e0
< =

(
µs − cosk

−2 Re
√

1− (v − iu)2

)
. (12)

By minimizing the ground-state energy with respect to the variables, we have the
following functional relation betweens andh through the constraints (10).

h = 2
εr(Q)1ζr(B)2− εr(B)2ζr(Q)1

detξr(Q,B)
for r =>,< . (13)

The dressed charge matrixξr is defined by the relationξr (k, v) = 1 +
KT
r (k, v|k′, v′)ξr (k′, v′), and the symbolsζr,j are given by the matrix elements of the

dressed chargeξr as follows; whenr => ζ>,j = (ξ>)j1 for j = 1, 2, and when
r =< ζ<,j = (ξ<)j1+ 2(ξ<)j2 for j = 1, 2. The symbolsεr are defined by

ε0
> = e0

> +
(
h/4
−h/2

)
ε0
< = e0

< +
(
h/4

0

)
. (14)

We can calculate the magnetizations through equations (13) and (10). We thus derive
the magnetic susceptibilityχr,L of the finite lattice ofL sites, for ther => andr =< cases.
HereL is a large but finite number.

χr,L =
{
∂h

∂Q

∂Q

∂S
+ ∂h

∂B

∂B

∂S

}−1

=
{

2vr,1(Q)

ρr,L(Q)1

ζ 2
r,2(B)

det2 ξr (Q,B)
+ 2vr,2(B)

ρr,L(B)2

ζ 2
r,1(Q)

det2 ξr (Q,B)

}−1

for r =>,< . (15)

The Fermi velocitiesvr,j are given by thej th component ofvr defined byvr = e′0r +Krvr ,
where e

′0
r denote the vector whose first and second components are d/dk er(k)1 and

d/dv er(v)2, respectively. We note that if we specify the densityn and magnetization
s, then the parametersQ andB in equation (15) are defined by (10).

Let us discuss the boundary contributionδχr to the susceptibility for both the repuslive
and attractive cases. We assume that the finite and infinite systems have the samen ands.
Then we may formally defineδχr by the following

δχr = χr,L(Q,B)− χr,∞(Q∞, B∞) for r =>,< . (16)

HereQ∞ andB∞ are the interval parameters for the infinite system, which are given by
eq. (10) after taking the infinite limit:L → ∞. For the case of nonzero magnetic field
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(B∞ 6= ∞), we may evaluateδB = B −B∞ by taking the derivatives of eq. (10). In terms
of the dressed charge we have(
δQ

δB

)
= 1

L

(
ξr,22 −ξr,21

−ξr,12 ξr,11

)(
1− ∫ Q∞−Q∞ τr(k)1 dk

1− ∫ B∞−B∞ τr(v)2 dv

)
1

detξr
for r =>,< . (17)

Here the matrix elements of the dressed charge are evaluated atQ∞ andB∞. ForU > 0,
by the Wiener–Hopf method we can show that under zero magnetic fieldB is as large as
logL. We also note that for some values of the boundary fields, the magnetizations of the
finite system can take a nonzero value under zero magnetic field:h = 0, in general.

We find that the boundary contributionδχr to the magnetic suceptibility contains both
the charge and spin parts. We recall that the densities of the rapidities contain the 1/L-terms,
which come from the open-boundary condition. We note that under the periodic boundary
condition, the finite-size corrections of the densities do not have 1/L-terms; the first nonzero
order is given by 1/L2-terms. Therefore, the 1/L-term together withδQ andδB will reflect
the effect of the open-boundary conditions. It seems that the result is different from the
perturbative calculation of theδχ in [7]. However, theδχ in [7] is obtained by using the
bosonization method, where some limiting procedures are employed. Thus, it is not easy to
point out the most important reason why they are different. We shall discuss this possible
discrepancy in later publications.

3. The specific heat

In the rest of the paper, we show how to calculate the low-temperature specific heat
of the open-boundary Hubbard model. We consider only the repulsive case (U > 0).
For the negativeU case, we can derive similar results making use of the particle–hole
transformation. Under the zero boundary fields case, the Bethe-ansatz equations (2) and
(3) are equivalent to those of the periodic case. Thus, the solutions of the Bethe-ansatz
equations have the same structure such as in the periodic Hubbard model [23]. There are
both real and complex solutions for the momentumkj and rapilityvm. They can be classified
into three groups: real momentak, n-λ strings andn-λ-k strings. Then-λ string solution
for the rapidityv is given by

λn,jm = λm + iu(n+ 1− 2j) j = 1, . . . , n. (18)

The n-λ-k string solutions for the momentumk and the rapidityv are defined by

λ
′n,j
m = λ′m + iu(n+ 1− 2j) j = 1, . . . , n

kn,2j+1
m = π − sin−1(λ′m + iu(n− 2j)) 06 j 6 n− 1

kn,2jm = sin−1(λ′m + iu(n− 2j)) 16 j 6 n− 1

kn,2nm = π − sin−1(λ′m − iun).

(19)

Here λn and λ′n are the centres of ann-λ string and ann-λ-k string, respectively. The
symbolsMn, M ′n andM ′ are the numbers ofn-λ strings, n-λ-k strings and the allλ-k
strings, respectively. Thekj ’s form real momenta forj = 1, . . . , N − 2M ′. We note
M ′ = ∑

n nM
′
n. We recallu = U/4. In this paper, we only consider the case where all

solutions are given by the three groups with the strings.
Taking the asymptotic expansion (up to the order of 1/L), we can derive the following

integral equations of the densities of particles and holes from the Bethe-ansatz equations
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(2) and (3).

ρh(k) = −ρ(k)+ 1

π
+ 1

L

d

dk
P0(k)+

∞∑
n=1

∫
θ ′n(sink − λ) cosk(σn(λ)+ σ̃n(λ)) dλ

σhn (λ) =
1

L

d

dλ
Qn

0(λ)+
∫
θ ′n(sink − λ)ρ(k) dk −

∞∑
m=1

Anmσm(λ)

σ̃ hn (λ) =
2

π
Re

(
1√

1− (λ− inu)2

)
+ 1

L

d

dλ
Q̃n

0(λ)

+
∫
θ ′n(sink − λ)ρ(k) dk −

∞∑
m=1

Anmσ̃m(λ)

P0(k) = 1

2π i
log

(1+ p1↑e−ik)(pL↑ + eik)

(1+ p1↑eik)(pL↑ + e−ik)
−
∞∑
m=1

θm(sink)(2− δ(Mm, 0)− δ(M ′m, 0))

Qn
0(λ) =

∞∑
m=1

2nm(λ)(1− δ(Mm, 0))

− 1

2π i

n∑
j=1

log
(λ+ ζ+ + iu(n− 2j))(λ+ ζ− + iu(n− 2j))

(λ− ζ+ − iu(n− 2j))(λ+ ζ− − iu(n− 2j))

Q̃n
0(λ) =

∞∑
m=1

2nm(λ)(1− δ(M ′m, 0))− 1

2π i

2n∑
j=1

log
(1+ p1↑e−ikn,j )(pL↑ + eikn,j )

(1+ p1↑eikn,j )(pL↑ + e−ikn,j )

+ 1

2π i

n∑
j=1

log
(λ+ ζ+ + iu(n− 2j))(λ+ ζ− + iu(n− 2j))

(λ− ζ+ − iu(n− 2j))(λ+ ζ− − iu(n− 2j))

Anmf (x) = δnmf (x)+ ∂

∂x

∫
2nm(x − x ′)f (x ′) dx ′

(20)

whereθn(x) = 2 tan−1(x/nu)/2π and2nm(x) = (1− δnm)θ|n−m|(x)+ 2θ|n−m|+2(x)+ · · · +
2θn+m−2(x)+θn+m(x). The symbolδ(j, k) denotes the Kronecker delta. We note thatρ, σn
and σ̃n are the particle densities of the real momentakj ’s, the centres of then-3 strings,
and the centres of then-3-k strings, respectively;ρh, σ hn and σ̃ hn are the hole densities of
them, respectively. It is remarked that in the derivation of the Bethe-ansatz equations (20),
we have assumed that the string solutions for the finite system could have small deviations
from those of the infinite system given in (19).

The total energyE of the system is given by

E

L
= 1

L

(
(1− µs)(1− δ(N, 2M ′))− h

2

∞∑
n=1

n(1− δ(Mn, 0))

)
− 1

L

∞∑
n=1

(
2
√

1+ (nu)2+ nµ
)
(1− δ(M ′n, 0))+

∫ π

−π
(µs − cosk)ρ(k) dk

+h
2

∞∑
n=1

n

∫ ∞
−∞

σn(λ) dλ+
∞∑
n=1

∫ ∞
−∞

2 Re
(√

1− (λ− inu)2+ nµ
)
σ̃n(λ) dλ.

(21)

It should be emphasized that the sums for the zero modes in (21) do not become infinite
because we takeL a large but finite number.
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Minimizing the thermodynamic potential� = E − T S, we can show the following
thermal Bethe-ansatz equations for the ratios of the particle and hole densitiesζ = ρh/ρ,
ηn = σhn /σn, and η̃n = σ̃ hn /σ̃n:

ln ζ(k) = −2 cosk

T
+
∫ ∞
−∞

sech

(
π(λ− sink)

2u

)(
ln

1+ η̃1

1+ η1
− 4 Re(

√
1− (λ− iu)2

T

)
dλ

4u

ln η1(λ) = s ∗
(

ln(1+ η2(λ))−
∫ π

−π
ln(1+ ζ−1(k) coskδ(λ− sink) dk

)
ln η̃1(λ) = s ∗

(
ln(1+ η̃2(λ))−

∫ π

−π
ln(1+ ζ(k) cosk δ(λ− sink) dk

)
ln ηn(λ) = s ∗ (ln(1+ ηn+1(λ))+ ln(1+ ζn−1(λ)))

ln η̃n(λ) = s ∗ (ln(1+ η̃n+1(λ))+ ln(1+ ζ̃n−1(λ)))

ln ηn(λ)
n→∞= n

h

T

ln η̃n(λ)
n→∞= n

4u+ 2µ

T

(22)

where the convolutions∗ is given bys ∗ f (x) = ∫ (sech(π(x − x ′)/2u)/4u)f (x ′) dx ′. The
last two limits in (22) should be understood as the asymptotic limit ofn consistent with
that of 1/L; the notationn → ∞ means thatn should be taken a very large but finite
number. We should note that the variation of the particle and hole densities should be
taken over all the positive values of rapidities since they are even functions; we have such
as ρ(k) = ρ(−k), and so on: σ(v) = σ(−v), and σ̃ (v) = σ̃ (−v), ρh(k) = ρh(−k),
σh(v) = σh(−v), and σ̃ h(v) = σ̃ h(−v).

Substituting (20) into� we have the asymptotic expansion of the thermodynamic
potentialωL = �/L with respect to 1/L

ωL = 1

L

(
(1− µs)(1− δ(N, 2M ′))− h

2

∞∑
n=1

(1− δ(Mn, 0))

)
− 1

L

∞∑
n=1

(
2
√

1+ (nu)2+ nµ
)
(1− δ(M ′n, 0))

−
∫ π

−π

(
1

2π
+ 1

2L

dP0 (k)

dk

)
T ln(1+ ζ−1(k)) dk

−
∞∑
n=1

∫ ∞
−∞

1

2L

dQn
0 (λ)

dλ
T ln(1+ η−1

n (λ) dλ

−
∞∑
n=1

∫ ∞
−∞

(
1

π
Re(

1√
1− (λ− inu)2

+ 1

2L

dQ̃n
0 (λ)

dλ

)

×T ln(1+ η̃−1
n ) dλ+ o

(
1

L

)
. (23)

We now introduceκ = T ln ζ and ε1 = T ln η1. We denote the zero-temperature
limits of κ and ε1 by κ(0) and ε(0)1 , respectively. Hereafter we assumeh � T . We
can calculate the specific heatCL through CL = −T ∂2ωL/∂T

2. We give the final
results:
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(a)−µ 6 −2− h/2.

ωL(T , h, µ) = ωL(0, h, µ)− T
3/2

π

(
1+ δf

L

)∫ ∞
0

ln

(
1+ e−x

2
exp

{
2+ h/2− µ

T

})
dx

(24)

where

δf =
{

1/(1+ pL↑) pL↑ 6= −1
1/2 pL↑ = −1

}
−
{(

p1↑/(1+ p1↑) p1↑ 6= −1
1/2 p1↑ = −1

)}
.

Let C∞ and δC denote the bulk and the boundary specific heats, respectively. Then from
(24), we see the following

CL = C∞ + δC = C∞
(

1+ 1

L
δf

)
. (25)

(b) ε(0)1 (0) > 0, −µ > −2− h/2.
In this region, the thermodynamic potential is given by

ωL(T , h, µ) = ωL(0, h, µ)− π2T 2

12 sinQ

(
1

π
+ 1

L

d

dk
P0(Q)

)
−2T 3/2

[
g(0)+ 1

L
δg(0)

]√
2

d2

dλ2 ε
(0)
1 (0)

∫ ∞
0

ln(1+ e−x
2
e−ε

(0)
1 (0)/T ) dx

g(λ) = 1

2π

∫ Q

−Q

2u

(λ− sink)2+ u2

dk

2π

δg(λ) = 1

2

∫ Q

−Q

2u

(λ− sink)2+ u2

d

dk
P0(k)

dk

2π
+ 1

2

d

dλ
Q1

0(λ).

(26)

Here the parameterQ is the zero ofκ(0)(k). From this expression, we find the ratioδC/C∞
δC

C∞
= π

L

d

dk
P0(Q). (27)

(c) h > 4(
√

1+ u2− u), −µ > 2− h/2.
In this region, we find

ωL(T , h, µ) = ωL(0, h, µ)− T 3/2π−1(1+ π
d

dk P0(π)

L
)

∫ ∞
0

ln(1+ eαe−x
2
) dx

−T 3/24(1+ u2)1/4π−1

(
1+ 0

L

)∫ ∞
0

ln(1+ eβe−x
2
) dx

α = 2+ u− h/2
T

β = −h− 4(
√

1+ u2− u)
T

0 = π
√

1+ u2

2

[ ∫ π

−π

2u

sin2 k + u2

d
dk P0(k)

2π
dk + d

dλ
Q1

0(0)

]
.

(28)

(d) ε(0)1 (0) < 0, κ(0)(π) > 0.
Let us denote byB the zero ofε(0)1 (λ). Then from the thermal Bethe-ansatz equations

(23), we obtain

ωL(T , h, µ) = ωL(0, h, µ)− π2T 2

6 d
dk κ

(0)(Q)
ρcL(Q)−

π2T 2

6 d
dλε

(0)
1 (B)

ρsL(B) (29)
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where the density functions are given byρcL(k) = ρ>,L(k)1 andρsL(v) = ρ>,L(v)2, where
ρ>,L = (ρ>,L(k)1, ρ>,L(v)2) is the density for the ground state of the repulsive case. (See
also [18].)

(e) 4
√

1+ u2− u > h� T , κ(0)(π) 6 0.
In this region, the free energy can be evaluated as

ωL(T , µ, h) = ωL(0, µ, h)− π2T 2

6 d
dλε

(0)
1 (B)

σ
(0)
1 (B)

−T 3/2ρ0(π)

√
2

− d2

dk2κ
(0)(π)

∫ ∞
0

ln(1+ eκ
(0)(π)/T e−x

2
) dx (30)

whereρ0 andσ (0)1 are defined by

σ
(0)
1 (λ) = σ0(λ)+

∫
|λ′|>B

R(λ− λ′)σ (0)1 (λ′) dλ

d

dλ
ε
(0)
1 (λ) =

∫ π

−π
s(sink − λ) cosk dk +

∫
|λ′|>B

R(λ− λ′) d

dλ′
ε
(0)
1 (λ′) dλ′

σ0(λ) =
∫ π

−π

1

π
s(λ− sink) dk + 1

L

(
d

dλ
Q1

0(λ)+ R ∗
d

dλ
Q1

0(λ)

)
+ 1

L

∫ π

−π
s(λ− sink)

(
d

dk
P0(k)− Q̂0(k)

)
dk

ρ0(k) = 1

π
+ 1

L

(
d

dk
P0(k)− Q̂0(k)

)
+ cosk

∫ ∞
−∞

a1(sink − λ)

×
(
σ0(λ)− 1

L

[
d

dλ
Q1

0(λ)+ R ∗
d

dλ
Q1

0(λ)

])
dλ

(31)

and Q̂(k) = cosk
∫
s(sink − x) d/dx Q1

0(x) dx. Here f ∗ g(x) = ∫
f (x − x ′)g(x ′) dx ′,

s(x) = sech(πx/2u)/4u andR(x) = s ∗ 2u/(2π(x2+ u2)).
From the low-temperature expansion of the thermodynamic potential, we find the

boundary contribution to the specific heat at low temperature

δC

C∞
= 1

L



δf case (a)

π
d

dk
P0(Q) case (b)

π d
dk P0(π)C

c+ 0Cs

Cc+ Cs
case (c)(

Ccτ c(Q)

ρc∞(Q)
+ C

sτ s(B)

ρs∞(B)

)/
(Cc+ Cs) case (d)

δσ
(0)
1 (B)

σ
(0)
1,∞(B)

case (e).

(32)

HereC∞ denotes the bulk specific heat, andCc andCs denote the contributions to the bulk
specific heatC∞ from the charge and spin parts, respectively;C∞ = Cc+Cs. The symbols
σ
(0)
1,∞(B) andδσ (0)1 (B) are the bulk and the 1/L parts ofσ (0)1 (B).

The boundary contributions to the magnetic susceptibility and the specific heat depend
on the boundary fields and the electron density. In regions (a), and (c), the specific heat is
proportional toT −3/2e−α/T whereα is a positive constant. In regions (b), (d) and (e), the
specific heat depends linearly on temperature. For the boundaries of the regions between (a)
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and (b), (b) and (c), (b) and (d), (c) and (e), and (d) and (e), the specific heat is proportional
to T 1/2. We recall that for some regions of the boundary fields, there may exist other
types of solutions (boundary string states) of the Bethe-ansatz equations [24–28]. We can
calculate the contribution from the boundary string states simply by modifying the termτ 0

r

in our derivation.
In summary, we have studied the boundary contributions to the magnetic susceptbility

and the specific heat for the 1d Hubbard model under the general open-boundary conditions.
They are calculated analytically and explicitly. From the results we can discuss exactly the
impurity effect in the 1d Hubbard model or in the interacting electrons in 1d.
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